
Problem (4). Express
∫∫∫

E
f(x, y, z)dV as an iterated integral in the two dif-

ferent ways below, where E is the solid bounded by the surfaces y = 4− x2 − z2
and y = 0.

(a)
∫∫∫

E
f(x, y, z)dy dz dx

(b)
∫∫∫

E
f(x, y, z)dz dy dx

Solution

(a) This one is fairly easy. The base in the xz-plane is a circle of radius 2, so we
have −2 ≤ x ≤ 2 and −

√
4− x2 ≤ z ≤

√
4− x2. The y bounds are given,

so ∫ 2

−2

∫ √4−x2

−
√
4−x2

∫ 4−x2−z2

0

f(x, y, z)dy dz dx

(b) This one is more difficult. Let’s do the systematic approach mentioned in
class today: First we find the x bounds, which are the same as before. Now
for a fixed x, we have two curves: y = 0 and y = 4 − x2 − z2. Solving for
z in terms of y in the second curve, we find z = ±

√
4− x2 − y. Hence our

bounds become ∫ 2

−2

∫ 4−x2

0

∫ √4−x2−y

−
√

4−x2−y
f(x, y, z)dz dy dx

This can be most easily seen by sketching the region in R2 (remember that
here x is a fixed number!) defined by 0 ≤ y ≤ 4− x2 − z2 in the yz-plane;
it’s bounded by a parabola. Working left to right and bottom to top gives
us exactly these bounds.

Remark. Although this doesn’t guarantee that the bounds are right, this
can be checked by integrating some ”easy” function, such as 1. Each integral
gives 8π, which is some decent evidence that our answer is correct.

Problem (5). Evaluate the triple integral
∫∫∫

E
zdV where E is the region in the

first octant that lies between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4.

Solution This is best done in spherical coordinates: We have 1 ≤ ρ ≤ 2.
Since we’re in the first octant, 0 ≤ θ, ϕ ≤ π/2, so we get (recall z = ρ cosϕ):∫ π/2

0

∫ π/2

0

∫ 2

1

(
ρ cosϕ

)
ρ2 sinϕdρdϕdθ

This iterated integral can be separated into three integrals: The θ integral is
equal to π/2, the ρ integral is equal to (24− 14)/4 = 15/4, and the ϕ integral is∫ π/2

0

cosϕ sinϕdϕ =
1

2
sin2 ϕ

∣∣∣π/2
0

=
1

2

Hence, the answer is 15π/16.
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Problem (7). Find the work done by the force field ~F (x, y) =~i+ (2y + 1)~j in
moving an object along an arch of the cycloid

~r(t) = (t− sin t)~i+ (1− cos t)~j, 0 ≤ t ≤ 3π

Solution The work is the line integral of ~F · d~r. We compute d~r first:

d~r = ~r′(t)dt = ((1− cos t)~i+ sin t~j)dt

Hence,

~F (x, y) · r′(t) =
(
~i+ (2(1− cos t) + 1)~j

)
·
(
(1− cos t)~i+ sin t~j

)
= (1− cos t) + (3− 2 cos t) sin t

Thus,

W =

∫ 3π

0

(1− cos t) + (3− 2 cos t) sin t dt

Computing the integral is left to the reader.

Problem (9). Consider the vector field ~F (x, y) = (7ye7x)~i+ (e7x + 2y)~j.

(a) Use a systematic approach to find a potential function for ~F . Even if you
can do it in your head, instead show work.

(b) Evaluate
∫
C
F · d~r where C is parametrized by ~r(t) = cos t~i+ t~j.

Solution

(a) The systematic approach is to integrate in one variable and differentiate
in the other variable, finding the ”constant of integration.” For no reason
whatsoever, let’s integrate in y first:

f(x, y) =

∫
e7x + 2y dy = ye7x + y2 + c(x)

Now to find c, differentiate in x:

7ye7x =
∂f

∂x
= 7ye7x + c′(x)

So c′(x) = 0 and c is constant. So one potential function is

f(x, y) = ye7x + y2

or adding a constant.

(b) The path is irrelevant by the FTC for line integrals. The starting point
(t = 0) is at (1, 0) and the ending point is at (1, 2π). Hence,∫

C

~F · d~r = f(1, 2π)− f(1, 0) = 2πe7 + 4π2
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Problem (11). Express the volume in the first octant bounded by the plane
x+ y + z = 1 in spherical coordinates.

Solution Since we’re in the first octant, we have 0 ≤ θ, ϕ ≤ π/2 (sketch
this tetrahedron and convince yourself that we really do need all these angles).
As far as the radius ρ, we have a lower bound of ρ = 0 (at the origin) and the
upper bound is expressed by x + y + z = 1. Substituting in what x, y, z are in
spherical coordinates,

ρ sinϕ cos θ + ρ sinϕ sin θ + ρ cosϕ = 1

so our upper bound is

ρ = (sinϕ cos θ + sinϕ sin θ + cosϕ)−1

Hence,

V =

∫ π/2

0

∫ π/2

0

∫ (sinϕ cos θ+sinϕ sin θ+cosϕ)−1

0

ρ2 sinϕdρdϕdθ

Problem (14). Set up but do not evaluate the iterated integral for computing
the volume of a region D if D is the right circular cylinder whose base is the
disk r = 2 cos θ (in the xy-plane) and whose top lies in the plane z = 5− 2x.

Solution Our bounds are already partially given in cylindrical coordinates,
so this is the most natural choice. Note z becomes 5−2r cos θ. Finally, we need
the θ bounds: Note that r = 2 − cos θ is a circle centered at the point (1, 0),
and passes through the origin at θ = 0 and θ = 2π. These are our bounds, so

V =

∫ 2π

0

∫ 2−cos θ

0

∫ 5−2r cos θ

0

1 r dz dr dθ

Problem (16). Find the volume of the solid region E = {(x, y, z)|0 ≤ x ≤
z, 1 ≤ y ≤ 5, y ≤ z ≤ 5}.

Solution Rectangular coordinates work here. We should integrate in y last,
and x before z, since our x bounds are given in terms of z. Hence,

V =

∫ 5

1

∫
y5
∫ z

0

1 dx dz dy

Computing this integral is left to the reader.

Problem (18). The density of the half-hemisphere defined by

x2 + y2 + z2 ≤ 4, z ≥ 0

is equal to the distance above the xy-plane. Find the mass of this object.

Solution This is most natural in spherical coordinates: The upper half-
space means 0 ≤ ϕ ≤ π/2, while 0 ≤ ρ ≤ 2 and 0 ≤ θ ≤ 2π. Then the density
is equal to z = ρ cosϕ, so

m =

∫ 2π

0

∫ π/2

0

∫ 2

0

ρ cosϕρ2 sinϕdρdϕdθ

Computing this integral is left to the reader.

3


